The Kannan Contraction Mapping Theorem for Composition Operators in Metric Spaces and Partially Ordered Metric Spaces
نویسندگان
چکیده
منابع مشابه
Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کاملFUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملGeneralized Weakly Contractions in Partially Ordered Fuzzy Metric Spaces
In this paper, a concept of generalized weakly contraction mappings in partially ordered fuzzy metric spaces is introduced and coincidence point theorems on partially ordered fuzzy metric spaces are proved. Also, as the corollary of these theorems, some common fixed point theorems on partially ordered fuzzy metric spaces are presented.
متن کاملGeneralized $F$-contractions in Partially Ordered Metric Spaces
We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...
متن کاملA Contraction Fixed Point Theorem in Partially Ordered Metric Spaces and Application to Fractional Differential Equations
and Applied Analysis 3 Besides, if for any x, y ∈ M, there exists z ∈ M which is comparable to x and y, 2.4 then f has a unique fixed point. Proof. We first show that f has a fixed point. Since x0 f x0 and f is an increasing function, we obtain by induction that x0 f x0 f2 x0 f3 x0 · · · f x0 · · · . 2.5 Put xn 1 f x0 , n 1, 2, . . . For each integer n ≥ 1, from 2.5 , we have xn xn 1, then by 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earthline Journal of Mathematical Sciences
سال: 2019
ISSN: 2581-8147
DOI: 10.34198/ejms.3120.105119